53 research outputs found

    Multimodal Signal Processing and Learning Aspects of Human-Robot Interaction for an Assistive Bathing Robot

    Full text link
    We explore new aspects of assistive living on smart human-robot interaction (HRI) that involve automatic recognition and online validation of speech and gestures in a natural interface, providing social features for HRI. We introduce a whole framework and resources of a real-life scenario for elderly subjects supported by an assistive bathing robot, addressing health and hygiene care issues. We contribute a new dataset and a suite of tools used for data acquisition and a state-of-the-art pipeline for multimodal learning within the framework of the I-Support bathing robot, with emphasis on audio and RGB-D visual streams. We consider privacy issues by evaluating the depth visual stream along with the RGB, using Kinect sensors. The audio-gestural recognition task on this new dataset yields up to 84.5%, while the online validation of the I-Support system on elderly users accomplishes up to 84% when the two modalities are fused together. The results are promising enough to support further research in the area of multimodal recognition for assistive social HRI, considering the difficulties of the specific task. Upon acceptance of the paper part of the data will be publicly available

    Energy expenditure estimation using visual and inertial sensors

    Get PDF
    © The Institution of Engineering and Technology 2017. Deriving a person's energy expenditure accurately forms the foundation for tracking physical activity levels across many health and lifestyle monitoring tasks. In this study, the authors present a method for estimating calorific expenditure from combined visual and accelerometer sensors by way of an RGB-Depth camera and a wearable inertial sensor. The proposed individual-independent framework fuses information from both modalities which leads to improved estimates beyond the accuracy of single modality and manual metabolic equivalents of task (MET) lookup table based methods. For evaluation, the authors introduce a new dataset called SPHERE_RGBD + Inertial_calorie, for which visual and inertial data are simultaneously obtained with indirect calorimetry ground truth measurements based on gas exchange. Experiments show that the fusion of visual and inertial data reduces the estimation error by 8 and 18% compared with the use of visual only and inertial sensor only, respectively, and by 33% compared with a MET-based approach. The authors conclude from their results that the proposed approach is suitable for home monitoring in a controlled environment

    A community effort in SARS-CoV-2 drug discovery.

    Get PDF
    peer reviewedThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against Covid-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors. Participating teams used a wide variety of computational methods to screen a minimum of 1 billion virtual molecules against 6 protein targets. Overall, 31 teams participated, and they suggested a total of 639,024 molecules, which were subsequently ranked to find 'consensus compounds'. The organizing team coordinated with various contract research organizations (CROs) and collaborating institutions to synthesize and test 878 compounds for biological activity against proteases (Nsp5, Nsp3, TMPRSS2), nucleocapsid N, RdRP (only the Nsp12 domain), and (alpha) spike protein S. Overall, 27 compounds with weak inhibition/binding were experimentally identified by binding-, cleavage-, and/or viral suppression assays and are presented here. Open science approaches such as the one presented here contribute to the knowledge base of future drug discovery efforts in finding better SARS-CoV-2 treatments.R-AGR-3826 - COVID19-14715687-CovScreen (01/06/2020 - 31/01/2021) - GLAAB Enric

    Analysis and classification of speech signals by generalized fractal dimension features

    No full text
    International audienceWe explore nonlinear signal processing methods inspired by dynamical systems and fractal theory in order to analyze and characterize speech sounds.A speech signal is at first embedded in a multidimensional phase-space and further employed for the estimation of measurements related to the fractal dimensions.Our goals are to compute these raw measurementsin the practical cases of speech signals, to further utilize them for the extraction of simple descriptive features and to address issues on the efficacy of the proposed features to characterize speech sounds.We observe that distinct feature vector elements obtain values or show statistical trends that on average depend on general characteristics such as the voicing, the manner and the place of articulation of broad phoneme classes. Moreover the way that the statistical parameters of the features are altered as an effect of the variation of phonetic characteristics seem to follow some roughly formed patterns.We also discuss some qualitative aspects concerning the linear phoneme-wise correlation between the fractal features and the commonly employed mel-frequency cepstral coefficients (MFCC) demonstrating phonetic cases of maximal and minimal correlation. In the same context we also investigate the fractal features' spectral content, in terms of the most and least correlated components with the MFCC.Further the proposed methods are examined under the light of indicative phoneme classification experiments.These quantify the efficacy of the features to characterize broad classes of speech sounds.The results are shown to be comparable for some classification scenarios with the corresponding ones of the MFCC features

    Speech analysis and feature extraction using chaotic models

    No full text

    Filtered dynamics and fractal dimensions for noisy speech recognition

    No full text

    Improving Doppler ultrasound spectroscopy with multiband instantaneous energy separation

    No full text
    corecore